
Why coreboot is harder
than you think

and
easier than you might

think possible
Ron Minnich

Google

Schedule

1000-1100 Coreboot overview
1100-1130 Depth Charge
1130-1200 Coreboot on ARM
1200-1300 Lunch/discussion/questions
1300-1400 Chromebooks and coreboot
1400-?? Your turn: you will build and boot
coreboot on QEMU. And, we'll show you how
we build/burn chromebooks (ARM and x86)

We encourage questions

Before we start ... save these
commands

log in to your laptop

cd

git clone http://review.coreboot.org/p/coreboot

cd

git clone git://git.seabios.org/seabios.git seabios

http://review.coreboot.org/p/coreboot
http://review.coreboot.org/p/coreboot
http://review.coreboot.org/p/coreboot

Now that you have those commands

● Please run them now so that we are all
ready for the tutorial

● Assuming we have a network ...
● And, also, make sure you have qemu,

gnubin tools (make, gcc, etc.), ncurses-dev,
bison, and flex

What coreboot is for

● Coreboot does minimal configuration of a
platform so that the resources are
discoverable configurable by other software
(a.k.a. "payload")
○ payload is a kernel (Linux, Plan 9, ...) or bootloader

● Note that it is assumed that the payload will
further configure the hardware

● Coreboot makes the platform configurable
● Coreboot does only as much configuration

as it absolutely has to, but no more

Motivation for this talk: somebody is
wrong on the internet! (http://xkcd.
com/386/)
● http://tinyurl.com/cog3d8d
● "I know that the Core Boot project also tries

to accomplish this, but their development
process is slow and their approach seems to
make the boot process more complicated
than it needs to be."

● The full note is just full of errors and
misunderstanding

● With a very nice set of corrections by Peter
Stuge in a follow on

Coreboot/LinuxBIOS over the years

● 1999: "We don't need no steenking BIOS"
○ Let Linux do it

● 2000: Linux can't do it all
○ OK, we will do a lot, and then hand off to Linux
○ We'll never do ACPI for security reasons
○ And we don't care about Windows

● 2005: OK, we have to do ACPI
○ So we'll do limited ACPI, but we won't run after Linux

is booted
○ And, yes, we'll do Windows

● 2008: Chipsets require System Management
○ So, we now also run after OS is booted
○ And support SMM

History: why is it called "BIOS"?

● "In the beginning", ... the BIOS was what did
IO for the OS
○ Basic Input Output Subsystem

● By 1999, OSes ignored the BIOS
● In 1999, hoped this trend would continue

○ Which is why we made Linux into the BIOS ->
LinuxBIOS

● The trend in the last 12 years has reversed
● PCs today are more dependent on the BIOS

than they have ever been
● A sad state of affairs, probably irreversible

What a BIOS does

● 1975: "bottom half" of OS/ load top half
● 1991: load OS (e.g. 386BSD)
● 199x: configure DRAM, then load OS
● 2002: set up CPU, bug fixes, load

microcode, set up DRAM, set up SMP, ...
● 2012: it's an even longer list

○ And much of it is no longer open
○ Sorry!

What we would like a BIOS to be

memcpy(0x100000, &bzImage, size);
((void *)(void) 0x100000)();

In 1991, that could have worked.
By 1999, that was impossible

What a BIOS is

ROM stage: getting
CPU/DRAM/IO to work correctly

RAM stage: set up IO, CPUs

boot stage: load an OS; jump to it

100

10000

100000

1000000000

1000000

10000000

1999 2012

"instruction times"

Really? ROM code in ~100
instructions?

● Really ...
● in 2000, on SiS 630 mainboards, we had

Disk on Chip (DoC) modules
● Had to fit primary load into 256 bytes
● That code

○ initialized CPU
○ turned on RAM
○ loaded blocks from DoC

● Those blocks were the rest of LinuxBIOS
● It used to be possible
● It no longer is

What does coreboot do in 2012?

● coreboot takes a platform from a power-on
state that OSes can not handle

● to a "virtual" state that OSes can handle
○ DRAM working
○ SMP working as it did in 1999, i.e. a set of largely

identical CPUs
○ IO busses configured
○ microcode loaded
○ bug handlers ready in system management mode
○ ACPI configured
○ APIC configured

● It's a long list
● The result is a "virtual 1999 SMP"

Doesn't the kernel do all that work?

● Many people think that the kernel knows
how to configure a platform

● It almost did, in 1999
○ Did not quite get PCI right

● But platforms today are a virtualization of the
real thing (more on that later)

● The kernel is less able to configure platforms
today than it could in 1999

● Due to increasing dependence on invisible
BIOS actions

Comparison of coreboot effort to OS
effort (I've done both several times)

Technology change Compares to

Motherboard change OS port with new drivers

Chipset change OS port with new CPU
family

New CPU implementation
(e.g. P4 to Nehalem)

OS port to new
architecture

● Verified with numbers from vendors
● And yet still hard to believe

BIOS is hard because hardware is
hard and getting harder

● Much harder now than it was in 2000
● Simple example: programming DRAM

○ 1990 chipset: DRAM "just worked"
■ This is how most people still think of it

○ Even in the SDRAM era (1995-2002)
■ Acer chipset,8 bits SPD, one register write

○ Modern x86, 2012, thousands of bits, thousands of
register writes (so much we cache it in FLASH!)

● Much less open
○ As late as 1999, most vendors documented "how to"

on public sites in painstaking detail
○ In 2012, only AMD does
○ Most DRAM "turn on code" is hidden (on ARM too)

Harder, less open hardware in 2012:
Percent of FLASH that is GPL code
Representative system

Year Intel x86 AMD
x86_64

"cellphone"
ARM

1998 0 0 ?

1999 100 0 ?

2003 100 100 100

2005 100 100 100

2012 12 100 5

How did it get to be so hard?

● A better question: why did it used to be so
easy?

● Why could 2 guys in a garage build Apple?
● The brilliance of the engineers that made

that possible is often overlooked
● Ease was a result of an engineering tradeoff
● Made it easy to assemble a computer from

parts
● Certain performance sacrifices were made

How hardware relates to BIOS

● 1970s/1980s world consisted of building
blocks that could be dropped together

CPUDRAM

UART

DISK
CONTROLLER

ROM

Early boot code

MOV$0, 0177364 //sector
MOV $1, 0177366 //block count
MOV $0, 0177362 //destination
MOV $1, 0177360 //Go!
1: BIT $1, 0177360 // Done?

BEQ 1b
JMP $0 // run

In a sense, microprocessor world
presented a "virtual machine"

● The hardware was extremely tolerant
● Hardware had to guarantee that data on

parallel busses had high integrity
● And skew would not be an issue
● "Skew?"

The dirty little secret: skew

CPU Memory

0

0

1

1

0

Skew

● The bits arrive at different times
● In the mini/microprocessor world, the fix was

to go slow
○ i.e. spec the bus timing so skew was not seen

● And use 'asynchronous' busses
● In the mainframe/supercomputer world, the

fix was to (by hand) tune per-wire delay lines
● And use synchronous busses
● So they went faster:
● 1991 Cray: 12,000 MiB/sec
● 1991 microprocessor: 32 MiB/sec

0

0

1

1

0

Improving performance: 1995 (or so)
synchronous DRAM

● DRAM, CPU now have a common clock
● Timing parameters located on DRAM

modules in serial ROM (SPD)
○ Contains timing parameters for DRAM chips
○ BIOS knows timing for CPU chipset

● Compute intersection and program chipset
● Problems

○ DRAM modules not always accurate
○ Boards have issues
○ Chipsets do not always work

● BIOS had to "know" the "quirks"
● Needed a better way to tune delay

Adjusting skew in a System/370
Delay line selectable in 250 ns increments

How you select a delay: jumpers
Many of these delay lines would be in a
typical system

2002: training comes to DRAM bus

● New (to most of us) technology: training
● "Training" is the process of iteratively putting

data on a bus, observing bus behavior, and
tuning per-wire on-chip delay lines to
optimize performance and minimize error

● It's quite hard to get right
○ In some cases it has taken two years for a new

chipset -- by the vendor
● In the last 10 years it has gotten very

complex
○ Takes up to 600 milliseconds on modern chipsets

2010: training comes to every bus

● Busses that talk to PCI controllers
● Busses that talk to the display
● Simple almost-serial busses that talk to

simple devices
● Almost every bus has to be trained
● And training can require a side-band

interaction with the device to get parameters
○ video devices talk over DDC link to manage training

● Much training happens after memory is up
● More time taken before the OS can run

Training

● All of it visible at the BIOS level
● Almost none of it visible at the OS level
● In other words, the task of the BIOS is to

configure complex, messy hardware into a
simple form that the OS can understand

● Which fools OS people into thinking they
know more about hardware than they do

● Hence those error-filled notes on the mailing
lists about how simple BIOS can be

● The OS people no longer see the real
hardware!

Virtual hardware example:
SMP startup

● Goal: provide users with a "sea of CPUs"
● e.g., cat /proc/cpuinfo does not show

different types of CPUs
● You don't think about it
● For the most part, kernel does not either
● But at the BIOS level, it is very visible!

The kernel/user view

CPU CPU CPU CPUCPU

CPU CPU CPU CPUCPU

CPU CPU CPU CPUCPU

CPU CPU CPU CPUCPU

CPU CPU CPU CPUCPU

CPU CPU CPU CPUCPU

CPU0

The BIOS view
"System BSP"

Core 1

"Node BSP"

Thread. . .Thread

Core n Thread. . .Thread

.

.

.

Core 1 Thread. . .Thread

Core n Thread. . .Thread

.

.

.

● Hardware is barely working at boot
● Have to at least load microcode on most

modern systems
○ But only on some of the cores ...

Thread. . .Thread
Thread.

.

.

Thread

Recommended SMP bringup

● Is NDA for new systems. Sorry!
● What the kernel does

○ send a broadcast SIPI to wake the cores up
○ Cores come up and self-configure
○ Quite elegant
○ Only works because BIOS did the hard part

● What coreboot does
○ carefully send one core at a time an SIPI
○ Tells core its starting IP
○ core loads SP from a global variable
○ Core zeros variable
○ which lets coreboot know it can wake the next core

● Why the difference?

Why the difference?

● At startup, different cores have very different
roles/capabilities

● One core turns on memory for all sockets
● Some cores do socket setup
● Some cores turn on threads
● Some threads do per-thread setup
● Lots of texture
● Goal of BIOS is to hide this texture and

attendant complexity as much as possible

Kernel SMP bringup

● Everyone wakes up at same time -->
maximum parallelism

● Obvious question: can we use kernel
algorithm in coreboot?

● The old answer: yes
○ on a set of P4 xeons

● The new answer: no
○ on newer systems, the cores are heterogeneous

● We actually tried the new system
● It worked on almost everything
● Except newer cpus!

The lesson

● In 2000, we created SMP startup for kernel
○ First GPL'ed BIOS-level SMP startup
○ "Let Linux do it"

● Worked on Intel
● Did not work due to K7 issue

○ On K7 all cores start up
○ BSP selection in software
○ BIOS therefore has to do SMP startup

● Moved it directly into coreboot
● But a kernel-level SMP startup will no longer

work in the BIOS
● Much more complex at BIOS level

BIOS sets up CPUs so simple SMP
models work

● The BIOS sees all the ugly SMP startup
○ And hides it
○ So the simple kernel-level SMP startup works

● Extend that idea to the rest of the hardware
● And now you know what a BIOS does
● And it's certainly not what it used to do ...

So it's hard. But not impossible.

● I hope I did not scare too many people off
● The goal of coreboot is to make a very hard

problem less hard
● And to make it open source
● To do so we structure coreboot in a way

designed to make adding new boards easy
● When a new board is needed, very little

code changes

Example for a modern board

● Consider the case of the Samsung
Chromebook and Chromebox

● One is a laptop, the other a desktop
● Laptop has a screen and keyboard built in
● Desktop supports up to two displays
● The laptop has an embedded controller (EC)
● Laptop can support WiFI and 3G
● Those are very different systems
● So let's take a look, first at the tools, then the

code

Coreboot uses git, gerrit, and
jenkins

● Git you know well
● Gerrit is the code base management tool

developed for android (demo)
● Jenkins is a "continuous build" framework
● When a CL is received, Jenkins starts off a

build of every single supported board to
make sure nothing breaks
○ One company told us how hard it was to manage 27

boards -- for just their own hardware!
○ we manage 10 times that many, for many

vendors/chipsets, and most of it is automated
● Jenkins will block CLs that break the build

Coreboot uses kconfig for
configuration

● We went through several config tool
iterations

● It was clear that Linux kconfig was the right
tool for many reasons

● Made the change in 2009
● Demo

Coreboot has a wealth of utilities

● When creating a new mainboard, there are
things you have to learn

● As the architectures and chipsets have
gotten more complex, we need more such
tools

● (demo)

coreboot has support for dynamic
resource discovery and allocation

● Perhaps our strongest capability
● Systems such as ARM tend to be very static

○ Simple config file can define the entire system
● PCs are very dynamic

○ DRAM, devices, CPU types, and so on
○ PCI enumeration can be very complex, especially

with bridges
● Coreboot is designed such that one can

specify classes of resources
● Coreboot can manage very complex

systems without requiring complex build-time
spec
○ One system (Agami) had over 30 PCI busses

Coreboot supports powerful debug
tools

● Full user-mode emulation environment
● Runs under qemu for learning
● gdb stub
● SerialICE: a full in-circuit-emulation

environment without the cost
● Possibly the neatest coreboot tool

SerialICE

● The problem:
● Need to run a test BIOS on a system without

working memory or most IO
● gdb stub can not function in that world: no

memory!
● Serialice consists of a very tiny "stub" that is

flashed onto the target board
● Stub supports simple remote operation

command set
● Test BIOS actually runs under qemu on the

host

SerialICE: run BIOS on host, have it
control target

Target System

SerialICE stub
(in place of BIOS)QEMU

BIOS
image

Control program:
lua interpreter

BIOS thinks it
is running the
hardware

SerialICE

● As the BIOS runs on QEMU, it will perform a
set of IO and memory ops

● These ops are transparently relayed over the
SerialICE link to the stub running on
hardware

● Can completely recreated IOs used to bring
a board up

● Only limit is timing-dependent operations are
hard

SerialICE has let us answer really
hard questions about hardware

● Extremely useful for very early stages of
DRAM startup

● Many other uses in different phases of
bringup

● In some cases it is the difference between
success and failure

● Can be used to discover obfuscated
hardware issues

And, finally, the community

● There are a lot of great people working on
coreboot

● IRC and mailing list
● Some at companies (e.g. Google) others at

universities
● coreboot.org
● Always happy to help
● And we're always looking for new members!

So, yes, it is hard

● But it is a chance to learn about the lowest
levels of the hardware that few people know

● And you can build on coreboot to do some
really innovative things

● In ways that are simply not possible using
standard BIOSes

● Since, after all, they are stuck with a 30-year
legacy compatibility burden

● We don't have that problem
● Although we *do* boot windows

Conclusion

● The system that the OS people see is an
illusion

● Constructed by the BIOS
● Coreboot allows you to see what's going on

underneath
● And also provides a powerful environment

for customizing generic platforms
● We welcome new members
● See coreboot.org for more information

Quick walkthrough of a real example

We're going to build coreboot and seabios and
boot a kernel

You need qemu; hope you have it.

If not, we can help you install it

I'll walk through it, then YOU will do it :-)

Setting it up

git clone http://review.coreboot.org/p/coreboot
cd coreboot
make menuconfig\to the payloads menu and
set it up for
no payload

http://review.coreboot.org/p/coreboot
http://review.coreboot.org/p/coreboot

Architecture (x86) ---> │ │
 │ │ Chipset ---> │ │
 │ Generic Drivers ---> │ │
 │ │ Console ---> │ │
 │ │ System tables ---> │ │
 │ │ Payload ---> │ │
 │ │ VGA BIOS ---> │ │
 │ │ Display --->

Add a payload (SeaBIOS) ---> │ │
 │ │ SeaBIOS version (stable) --->
│ │
 │ │ [*] Use LZMA compression for payloads (NEW)

Change to

(X) None │ │
 │ │ () An ELF executable payload |
│ () SeaBIOS │ │
 │ │ () FILO │ │

 │ |

Make coreboot

make

Creates a rom image that has an embedded
filesystem called 'cbfs'

To examine contents,
./build/cbfstool build/coreboot.rom print

This won't boot: no payload
Name Offset Type Size
cmos_layout.bin 0x0 cmos layout 1160
fallback/romstage 0x4c0 stage 9817
fallback/coreboot_ram 0x2b80 stage
30274
config 0xa200 raw 2357
(empty) 0xab80 null
217320

Get seabios as a payload and make
git clone git://git.seabios.org/seabios.git seabios
etc.
make
 Working around non-functional -combine
 Build default config

configuration written to /root/seabios/.config
#
 Working around non-functional -combine
 Build Kconfig config file
 Compiling IASL out/acpi-dsdt.hex
out/acpi-dsdt.dsl.i 570: Return(0x01)
Warning 1104 - ^ Reserved method should not return a
value (_L00)

out/acpi-dsdt.dsl.i 573: Return(_SB.PCI0.PCNF())
Warning 1104 - Reserved method should not return a value ^ (_E01)

Requires python2 ...

Version: rel-1.7.1-35-g02203b5-
20121015_122040-chromix
 File "./tools/layoutrom.py", line 76
 print "Error: Fixed section %s has non-zero
alignment (%d)" % (

so
make PYTHON=python2
...

Add the seabios payload to coreboot

cd ~/coreboot
./build/cbfstool build/coreboot.rom add-
payload -f ~/seabios/out/bios.bin.elf -n
fallback/payload
Name Offset Type Size
cmos_layout.bin 0x0 cmos layout 1160
fallback/romstage 0x4c0 stage 9817
fallback/coreboot_ram 0x2b80 stage
30274
config 0xa200 raw 2357
fallback/payload 0xab80 payload
123960
(empty) 0x29000 null
93288

Run it under qemu

qemu-system-x86_64 -m 256 -serial stdio -b
ios build/coreboot.rom -cdrom ~/Core-
current.iso -boot d

Now it's your turn ... after the rest of
the talks! (and we'll see this again)

